资源类型

期刊论文 373

会议视频 10

年份

2023 25

2022 39

2021 40

2020 30

2019 27

2018 22

2017 17

2016 11

2015 13

2014 20

2013 19

2012 8

2011 15

2010 14

2009 12

2008 18

2007 18

2006 8

2005 7

2004 2

展开 ︾

关键词

冶金 3

强度 3

颠覆性技术 3

力学性能 2

变形 2

增材制造 2

新材料 2

智能制造 2

材料 2

材料设计 2

析出强化 2

碳中和 2

高强度 2

1860 MPa等级 1

2019全球工程前沿 1

2035 1

3D 打印 1

4250 m 1

4D打印 1

展开 ︾

检索范围:

排序: 展示方式:

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 288-293 doi: 10.1007/s11709-018-0480-8

摘要: The most common experimental methods of measuring material strength are the uniaxial compressive and tensile tests. Generally, shearing fracture model occurs in both the tests. Compressive strength is higher than tensile strength for a material. Shearing fracture angle is smaller than 45° under uniaxial compression and greater than 45° under uniaxial tension. In this work, a unified relation of material strength under uniaxial compression and tension is developed by correlating the shearing fracture angle in theory. This constitutive relation is quantitatively illustrated by a function for analyzing the material strength from shear fracture angle. A computational simulation is conducted to validate this theoretical function. It is full of interest to give a scientific illustration for designing the high-strength materials and engineering structures.

关键词: strength     fracture     mechanics    

Truss-arch model for shear strength of seismic-damaged SRC frame columns strengthened with CFRP sheets

Sheng PENG, Chengxiang XU, Xiaoqiang LIU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1324-1337 doi: 10.1007/s11709-019-0557-z

摘要: Carbon fiber reinforced polymer (CFRP) materials are important reinforcing substances which are widely used in the shear strengthening of seismic-damage steel reinforced concrete (SRC) frame structures. To investigate the shear strength of SRC frame columns strengthened with CFRP sheets, experimental observations on eight seismic-damaged SRC frame columns strengthened with CFRP sheets were conducted at Yangtze University and existing experimental data of 49 SRC columns are presented. Based on the existing experiments, the theories of damage degree, zoning analysis of concrete, and strengthening material of the column are adopted. To present the expression formula of the shear strength of SRC frame columns strengthened with CFRP sheets, the contributions of strengthening material and transverse reinforcement to shear strength in the truss model are considered, based on the truss-arch model. The contribution of arch action is also considered through the analysis of the whole concrete and that of the three zones of the concrete are also considered. The formula is verified, and the calculated results are found to match well with the experimental results. Results indicate that the proposed whole analysis model can improve the accuracy of shear strength predictions of shear seismic-damaged SRC frame columns reinforced with CFRP sheets.

关键词: carbon fiber reinforced polymer material     steel reinforced concrete frame column     seismic-damaged     trussed-arch model     shear strength    

Application of cable-supported spatial grid in dry coal shed

XING Haidong, HAO Jiping, XU Guobin

《结构与土木工程前沿(英文)》 2008年 第2卷 第1期   页码 26-29 doi: 10.1007/s11709-008-0008-8

摘要: This paper presented a new structural style cable-supported spatial grid, which was applied in large span dry coal sheds. The influence of configuration of cable on the force of cable and beam, the ratio of beam force to cable force and the deflection of span was investigated, and a rational configuration of cable was obtained. The results show that the cable-supported spatial grid can maximize the use of material strength, and have the advantages of low usage of steel, large span and sufficient headroom.

关键词: dry     material strength     low     rational configuration     influence    

基于高等分析的钢结构设计——材料建模与应变极限 Research Article

Leroy Gardner, Xiang Yun, Andreas Fieber, Lorenzo Macorini

《工程(英文)》 2019年 第5卷 第2期   页码 243-249 doi: 10.1016/j.eng.2018.11.026

摘要:

我们对于钢框架的结构分析通常通过梁单元来进行。然而,由于该类单元无法确切地捕捉钢材截面的局部屈曲行为,因此,传统的钢结构设计规范采用截面分类的概念来确定截面强度以及变形能力受材料局部屈曲影响的程度。而塑性设计方法的使用仅限于 1 级截面,其具有足够的转动能力以形成塑性铰并引发倒塌机制。在更高级截面中,局部屈曲阻止了具有这种转动能力的塑性铰的形成,除非出于计算需求而使用壳单元,否则我们需要对材料进行弹性分析。然而,本文证明了通过将连续强度法(CSM)及其应变极限纳入分析,可以在梁单元中有效地模拟局部屈曲。此外,通过进行几何非线性和材料非线性的高等分析,可确保无需进行额外的设计检查。如果采用适当而精确的应力 - 应变关系,我们在较粗截面中观察到的应变硬化所带来的积极影响亦可以得到有效应用;为此,我们在文详尽地描述了一个用于热轧钢的四元线性材料模型。对于一致的高等分析框架中任意细长比截面的分析问题, CSM 应变极限分析法均适用,同时还可以从荷载重新分配水平的优化中受益。本文所提出的方法可用于单个构件、连续梁单元及相关框架结构,并且在精度与一致性等方面与当前钢结构设计规范相比,本方法具有显著优势。

关键词: 高等分析     连续强度法     局部屈曲     材料建模     应变极限    

Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy

Lei WANG, Jing LIU

《能源前沿(英文)》 2013年 第7卷 第3期   页码 317-332 doi: 10.1007/s11708-013-0271-9

摘要: As the basis of modern industry, the roles materials play are becoming increasingly vital in this day and age. With many superior physical properties over conventional fluids, the low melting point liquid metal material, especially room-temperature liquid metal, is recently found to be uniquely useful in a wide variety of emerging areas from energy, electronics to medical sciences. However, with the coming enormous utilization of such materials, serious issues also arise which urgently need to be addressed. A biggest concern to impede the large scale application of room-temperature liquid metal technologies is that there is currently a strong shortage of the materials and species available to meet the tough requirements such as cost, melting point, electrical and thermal conductivity, etc. Inspired by the Material Genome Initiative as issued in 2011 by the United States of America, a more specific and focused project initiative was proposed in this paper—the liquid metal material genome aimed to discover advanced new functional alloys with low melting point so as to fulfill various increasing needs. The basic schemes and road map for this new research program, which is expected to have a worldwide significance, were outlined. The theoretical strategies and experimental methods in the research and development of liquid metal material genome were introduced. Particularly, the calculation of phase diagram (CALPHAD) approach as a highly effective way for material design was discussed. Further, the first-principles (FP) calculation was suggested to combine with the statistical thermodynamics to calculate the thermodynamic functions so as to enrich the CALPHAD database of liquid metals. When the experimental data are too scarce to perform a regular treatment, the combination of FP calculation, cluster variation method (CVM) or molecular dynamics (MD), and CALPHAD, referred to as the mixed FP-CVM-CALPHAD method can be a promising way to solve the problem. Except for the theoretical strategies, several parallel processing experimental methods were also analyzed, which can help improve the efficiency of finding new liquid metal materials and reducing the cost. The liquid metal material genome proposal as initiated in this paper will accelerate the process of finding and utilization of new functional materials.

关键词: liquid metal material genome     energy material     material discovery     advanced material     room-temperature liquid alloy     thermodynamics     phase diagram    

Robust topology optimization of multi-material lattice structures under material and load uncertainties

Yu-Chin CHAN, Kohei SHINTANI, Wei CHEN

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 141-152 doi: 10.1007/s11465-019-0531-4

摘要: Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.

关键词: robust topology optimization     lattice structures     multi-material     material uncertainty     load uncertainty     univariate dimension reduction    

The effects of interfacial strength on fractured microcapsule

Luthfi Muhammad MAULUDIN, Chahmi OUCIF

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 353-363 doi: 10.1007/s11709-018-0469-3

摘要: The effects of interfacial strength on fractured microcapsule are investigated numerically. The interaction between crack and microcapsule embedded in mortar matrix is modeled based on cohesive approach. The microcapsules are modelled with variation of core-shell thickness ratio and potential cracks are represented by pre-inserted cohesive elements along the element boundaries of the mortar matrix, microcapsules core, microcapsule shell, and at the interfaces between these phases. Special attention is given to the effects of cohesive fracture on the microcapsule interface, namely fracture strength, on the load carrying capacity and fracture probability of the microcapsule. The effect of fracture properties on microcapsule is found to be significant factor on the load carrying capacity and crack propagation characteristics. Regardless of core-shell thickness ratio of microcapsule, the load carrying capacity of self-healing material under tension increases as interfacial strength of microcapsule shell increases. In addition, given the fixed fracture strength of the interface of microcapsule shell, the higher the ratio core-shell thickness, the higher the probability of microcapsules being fractured.

关键词: interfacial strength     cohesive elements     microcapsule     core-shell thickness ratio     fracture properties    

工程材料研究中科学问题的思考

于翘

《中国工程科学》 1999年 第1卷 第3期   页码 1-4

摘要:

在不少场合下,航天用工程材料处在极端条件下工作,这就对材料提出许多特殊的要求,虽然国内外有一定的研究积累,但对更精确的模型和符合特定材料的损伤的状态方程,有待深一步研究。如高级弹头再入时气动加热和粒子云侵蚀以及两者耦合效应引起弹头防护材料增大后退量的问题;空中垃圾和微流星的高速碰撞对航天器的威胁;特别是核爆和激光武器对材料的损伤和破坏,实质上是辐射引起的热击波层裂破坏,这些都属于超高速碰撞对材料的响应问题。天线罩材料、吸波材料、红外隐身材料、电磁屏蔽材料都是具有不同波长电磁波的电磁功能材料,它们对固体介质的穿透、吸收、反射等会产生响应,不同的电磁功能材料,其宏观性能的物理参量不同,但有几个参量是通用的,如介电常数、磁导率和损耗角正切,搞清这些参量与材料微观结构的关系,可以为材料设计和材料创新提供科学依据。

关键词: 天线罩材料     吸波材料     红外隐身材料     电磁兼容材料    

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1595-7

摘要:

● Mechanical behavior of MBT waste affected by loading rate was investigated.

关键词: Mechanically and biologically treated waste     Landfill     Triaxial test     Loading rate     Axial strain     Shear strength parameter    

The strength–dilatancy characteristics embraced in hypoplasticity

Zhongzhi FU, Sihong LIU, Zijian WANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 178-187 doi: 10.1007/s11709-013-0191-0

摘要: The strength-dilatancy characteristics of frictional materials embraced in the hypoplastic model proposed by Gudehus and Bauer are investigated and compared with the revised model suggested by Huang. In the latter the deviatoric stress in the model by Gudehus and Bauer is replaced by a transformed stress according to the stress transformation technique proposed by Matsuoka. The flow rule, the failure state surface equation and the strength-dilatancy relationship embraced in both models are derived analytically. The performance of the two hypoplastic models in reproducing the relationship between the peak strength and the corresponding dilation rate under triaxial compression, plane compression and plane shearing are then extensively investigated and compared with experimental results and with the predictions made by particular classical stress-dilatancy theories. Numerical investigations show that the performance in reproducing the strength-dilatancy relationship is quite satisfactory under triaxial compression stress state in both models and the predictions made by the transformed stress based model are closer to the results obtained from classical stress-dilatancy theories for plane compression and plane shearing problems.

关键词: strength     dilatancy     hypoplasticity     frictional materials    

Slender reinforced concrete shear walls with high-strength concrete boundary elements

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 138-151 doi: 10.1007/s11709-022-0897-y

摘要: Reinforced concrete structural walls are commonly used for resisting lateral forces in buildings. Owing to the advancements in the field of concrete materials over the past few decades, concrete mixes of high compressive strength, commonly referred to as high-strength concrete (HSC), have been developed. In this study, the effects of strategic placement of HSC on the performance of slender walls were examined. The finite-element model of a conventional normal-strength concrete (NSC) prototype wall was validated using test data available in extant studies. HSC was incorporated in the boundary elements of the wall to compare its performance with that of the conventional wall at different axial loads. Potential reductions in the reinforcement area and size of the boundary elements were investigated. The HSC wall exhibited improved strength and stiffness, and thereby, allowed reduction in the longitudinal reinforcement area and size of the boundary elements for the same strength of the conventional wall. Cold joints resulting from dissimilar concrete pours in the web and boundary elements of the HSC wall were modeled and their impact on behavior of the wall was examined.

关键词: slender walls     high-strength concrete     rectangular and barbell-shaped walls     cold joints    

A novel approach to minimizing material loss for computer numerical control flank-regrinding of worn

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0757-z

摘要: Flanks of end mills are prone to wear in a long machining process. Regrinding is widely used in workshops to restore the flank to an original-like state. However, the traditional method involves material waste by trial and error and dramatically decreases the potential regrinding. Moreover, over-cut would happen to the flutes of worn cutters in the regrinding processes because of improper wheel path. This study presented a new approach to planning the wheel path for regrinding worn end mills to minimize material loss and recover the over-cut. In planning, a scaling method was developed to determine the maximum size of the new cutter according to the similarity of cutter shapes before and after regrinding. Then, the wheel path is first generated by envelope theory to regrind the worn area with a four-axis computer numerical control grinder according to the new size of cutters. Moreover, a second regrinding strategy is applied to recover the flute shape over-cut in the first grinding. Finally, the proposed method is verified by an experiment. Results showed that the proposed approach could save 25% of cutter material compared with the traditional method and ensure at least three regrinding times. This work effectively provides a general regrinding solution for the worn flank with maximum material-saving and regrinding period.

关键词: flank-regrinding     worn end mill     wheel position and orientation     material loss     over-cut    

A MATLAB code for the material-field series-expansion topology optimization method

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 607-622 doi: 10.1007/s11465-021-0637-3

摘要: This paper presents a MATLAB implementation of the material-field series-expansion (MFSE) topo-logy optimization method. The MFSE method uses a bounded material field with specified spatial correlation to represent the structural topology. With the series-expansion method for bounded fields, this material field is described with the characteristic base functions and the corresponding coefficients. Compared with the conventional density-based method, the MFSE method decouples the topological description and the finite element discretization, and greatly reduces the number of design variables after dimensionality reduction. Other features of this method include inherent control on structural topological complexity, crisp structural boundary description, mesh independence, and being free from the checkerboard pattern. With the focus on the implementation of the MFSE method, the present MATLAB code uses the maximum stiffness optimization problems solved with a gradient-based optimizer as examples. The MATLAB code consists of three parts, namely, the main program and two subroutines (one for aggregating the optimization constraints and the other about the method of moving asymptotes optimizer). The implementation of the code and its extensions to topology optimization problems with multiple load cases and passive elements are discussed in detail. The code is intended for researchers who are interested in this method and want to get started with it quickly. It can also be used as a basis for handling complex engineering optimization problems by combining the MFSE topology optimization method with non-gradient optimization algorithms without sensitivity information because only a few design variables are required to describe relatively complex structural topology and smooth structural boundaries using the MFSE method.

关键词: MATLAB implementation     topology optimization     material-field series-expansion method     bounded material field     dimensionality reduction    

Effect of environment change on the strength of cement/lime treated clays

Takenori HINO, Rui JIA, Seiji SUEYOSHI, Tri HARIANTO

《结构与土木工程前沿(英文)》 2012年 第6卷 第2期   页码 153-165 doi: 10.1007/s11709-012-0153-y

摘要: The field strengths of cement/lime treated clays were investigated in the Ariake Sea costal lowlands. The deposition environment of the investigation location is reconstructed and compared to the present ground environment. The mechanism of the ground environment change and its effect on the strength of cement/lime treated soil are discussed. The strength development of improved soil using cement and lime in different curing environments was investigated in the laboratory for studying the effect of environment change on the strength also. It has been found that the strength deterioration of improved soil in deep mixing method is due to 1) the ground environment change due to the secondary oxidation which results in low pH value and high organic content, and 2) the formations of the porous structures result from the elution of the calcium ions. Also, it has been found that the initial strength increase of the improved soil is related to the dissolved silica and that the dissolution of the silica in clay minerals needs long time. When examining the long-term strength for preventing strength degradation, the effect of environmental change has to be considered. The importance of measuring pH and oxidation-reduction potential (ORP) of the ground for cement/lime solidification method is explained.

关键词: soil solidification     ground environment     strength deterioration     pH     oxidation-reduction potential (ORP)     silica    

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 316-324 doi: 10.1007/s11709-013-0211-0

摘要: Three groups of concrete beams reinforced with high-strength steel bars were tested, and the crack width and deformation of the specimens were observed and studied. To facilitate the predictions, two simplified formulations according to a theory developed by the first author were proposed. The advantages of the formulations were verified by the test data and compared with several formulas in different codes.

关键词: concrete beam     high-strength steel bar     crack width     deformation    

标题 作者 时间 类型 操作

Evaluating the material strength from fracture angle under uniaxial loading

Jitang FAN

期刊论文

Truss-arch model for shear strength of seismic-damaged SRC frame columns strengthened with CFRP sheets

Sheng PENG, Chengxiang XU, Xiaoqiang LIU

期刊论文

Application of cable-supported spatial grid in dry coal shed

XING Haidong, HAO Jiping, XU Guobin

期刊论文

基于高等分析的钢结构设计——材料建模与应变极限

Leroy Gardner, Xiang Yun, Andreas Fieber, Lorenzo Macorini

期刊论文

Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy

Lei WANG, Jing LIU

期刊论文

Robust topology optimization of multi-material lattice structures under material and load uncertainties

Yu-Chin CHAN, Kohei SHINTANI, Wei CHEN

期刊论文

The effects of interfacial strength on fractured microcapsule

Luthfi Muhammad MAULUDIN, Chahmi OUCIF

期刊论文

工程材料研究中科学问题的思考

于翘

期刊论文

Effect of loading rate on shear strength parameters of mechanically and biologically treated waste

期刊论文

The strength–dilatancy characteristics embraced in hypoplasticity

Zhongzhi FU, Sihong LIU, Zijian WANG

期刊论文

Slender reinforced concrete shear walls with high-strength concrete boundary elements

期刊论文

A novel approach to minimizing material loss for computer numerical control flank-regrinding of worn

期刊论文

A MATLAB code for the material-field series-expansion topology optimization method

期刊论文

Effect of environment change on the strength of cement/lime treated clays

Takenori HINO, Rui JIA, Seiji SUEYOSHI, Tri HARIANTO

期刊论文

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

期刊论文